If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+13t+19=0
a = 1; b = 13; c = +19;
Δ = b2-4ac
Δ = 132-4·1·19
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{93}}{2*1}=\frac{-13-\sqrt{93}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{93}}{2*1}=\frac{-13+\sqrt{93}}{2} $
| -8(v+6)=3v+7 | | m(3–4m)=7+4(8–m²) | | 2a-12=3a+18 | | 4(y-1)+7=5(2y-5) | | 4(x+3)-4=6x-2(-2+x) | | 7x+5=1+2(3x+2) | | -5v+47=-3(v-4) | | 2x²−40x+200=0 | | 10x-4x+12=6 | | 25+0.10m=20+0.20m | | 2(u+4)-6u=-12 | | 2x+2=-8+7x | | 8.3+5.6x=-5.4 | | 14x-2=28 | | 8u+4u=20 | | 6x-7=6x-x | | -2(x-3)=-6x-2 | | 25=20+0.10m | | 12-5=7+10x | | 4/3m=16 | | 9b/3=8 | | 10(x-12)-(-9x-4)=x-5+3 | | 3(x+5)-7=5x-2(-2+x) | | 2^3x-7=32 | | X+2x+3/2x=180 | | (5x-1)(2x-1)=13 | | (3x-17)+(x+140)+(2x-5)=180 | | 7x+1=6x-24 | | (2x+3)/7=(3x+7)/8 | | 12x^2-6x+81=0 | | -61=8-1/3(12w+42) | | 5x+5=25x= |